How to Manage Yeast for the Home Brewery

Dr. Douglas Gladue

University of Connecticut / Plum Island Animal Disease Center

BJCP National Judge

How I started with yeast

Graduate work: Stony Brook University

- -Thesis work in the Konopka Lab
- was on cell signaling in Saccharomyces cerevisiae
- -Homebrewer since Jan 2002

Why study yeast?

- Single cell organism
- One of the simplest Eukaryotic organisms
 - Bacteria are prokaryotic
 - Humans and all animals Eukaryotic
- Many cellular processes are conserved in yeast and humans
- About 20% of gene linked diseases in humans have a corresponding gene in yeast
- Many drugs were first tested in yeast.

Advantages of working in a yeast lab

- Always had a supply of yeast growth media
- Autoclaves for sterility
- "free consumables"
- Ability to isolate and freeze down any yeast strain
- Could have enough yeast to pitch overnight
- Yeast strains were always "Free"

UCONN/ Plum Island: Use Yeast to Study Viruses

Yeast and the Homebrewer

- Liquid yeasts not always available or fresh
 - Expensive some times 1/3 of the cost of ingredients
- Spontaneous brew day
 - Typically requires dried yeast or homebrew store visit
- Starters grow more slowly
 - Lab optimal growth conditions
- Freezing/ Storing yeasts more difficult
 - Most homes don't have
 - a -70oC freezer (typical home freezer is -20)
 - Sterile working environments

Overview

- History of yeast
- How yeast grow/ferment
- Yeast terminology/choosing a yeast strain
- New advances in yeast technology
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast

Discovery of yeast for fermentation

- 7000 years ago: Oldest records of beer
- Inoculation stick (vat to vat)
- Anton van Leeuwenhoek 1680

 First to observe yeast
- Theodore Schwann 1837

 Determined yeast was alive (*Zuckerpilz*)
 Latin translation: *Saccharomyces*
- Louis Pasteur 1866
- fermentation was from living cells

Photos from wikipedia

Yeast and Brewing

- 1876 Carlsberg established first brewing laboratory
- 1883 was the first brewery using pure yeast cultures Emil Christian Hansen.

Overview

- History of yeast
- How yeast replicate and ferment
- Yeast terminology/choosing the correct strain
- New advances in yeast technology
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast

How do yeast normally replicate?

Asexual process known as budding

- Electromicrograph
- Bud scars

hjx.ncist.edu.cn

Yeast replication is more complicated

- Asexual and sexual reproduction
- Yeast can be
 - haploid(single set of chromosomes)
 - Diploid(two sets of chromosomes)
 - Polyploid (more than two sets of chromosomes)
 - Most brewing strains are "confused"
 - Some level of polyploid

Sexual reproduction of yeast

James Konopka

In order to make great beer one must make love to the beer

Shmoo, from Al Capp's *Li'l Abner*

- Mating occurs only with haploid cells
- Most brewing strains are polyploid and don't mate
- Starvation/Sporulation required for haploid cells

There is no shmoo-ing or yeast love making in beer

How does Yeast Make beer?

Yeast are anerobic fermentators (no oxygen present)

- Oxygen is depleted 30-60 min after pitching
 If there is Oxygen no alcohol is made
- Yeast are consuming sugar -> Ethanol and Co2

• Fermentation is complex

http://www.intechopen.com/books/food-industry/yeastworld-s-finest-chef

The lag phase

- When nothing is happening.
- Yeast take up nutrients & Oxygen to prepare for growth
- Yeast start growing/fermenting
- The longer the lag phase=higher chance of contamination.
- How can we shorten the lag time
 - Fresh yeast
 - Increase number of viable yeast cells
 - Proper nutrients (zinc+)
 - Dissolved O2

Growth phase

Exponential growth: Would you like a \$1 today or a penny today , which doubles every day for 30 days

Flavor compounds are produced

- Fusel alcohols
- Esters (fruity)
- Sulfur
- Phenols (peppery, spicy, clove-like)
- Majority of fermentation occurs
 - Krausen
 - Airlock bubbling

Stationary phase

- Yeast stop replicating
- Krausen falls
- Yeast settle to the bottom
- Yeast start to reabsorb off compounds
 - Diacetyl
 - Acetaldehyde
 - Hydrogen sulfide (escapes as a gas)

Signs fermentation went bad

- Contamination (sour, plastic, bandaids)
 - Long Lag time
 - Unhealthy yeast
 - Poor sanitation practices
- Harsh Alcohol taste
 - High temperature (fusel alcohols)
 - Too high a pitch rate
 - Leaving yeast on trub

Signs fermentation went bad

- Yeast autolysis (Soapy, high esters, yeasty taste)
 - Old yeast
 - Poor Oxygenation
 - Leaving beer on yeast at high temps or long time
- Diacetyl(buttery)
 - Removing beer from yeast too quick
- Acetaldehyde
 - Removing beer from yeast too quick

Overview

- History of yeast
- How yeast grow/ferment
- Yeast terminology/choosing the correct strain
- New advances in yeast technology
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast

What kinds of yeast are there?

Ale vs. Lager

Ale strains

Top fermenting Ferment warm "quick" Clean (American) Estery/Fruity (English) Phenolic (Belgian/Weizen) Lager strains Bottom fermenting Ferment cold "slow" Dry or Malty Diacetyl Sulfur

Exceptions: California Common (lager at ale temp)

Yeast : Not just Ale vs Lager

- Currently 1500 different types of yeast
 - Not all can ferment sugar
 - only 1% palatable to taste
- Brewer's Yeast : Saccharomyces cerevisiae
- Saccharomyces pastorianus (lager strain)
- Saccharomyces uvarum (lager strain)
- Candida albicans (infectious yeast)
 - Yeast infections (makes bad tasting beer)
- Brettanomyces
 - bruxellensis, anomalus, custersianus, naardenensis, nanus

Picking the proper yeast

#1. What beer is being made

- Flavor profile desired
- Clean
- Fruity
- Esters
- Phenolic
 - Belgian beers
 - German Weise
- Sour beers

Picking the proper yeast #2: What is available

- Dry yeast
 - Long shelf life
 - High Viability
 - No planning

- Liquid yeast
 - Short shelf life
 - Freshness
 - Planning

Picking the proper yeast

#3: What temperature's can I ferment at

- Not as important if you have temperature control
- Fermentation temps in the house
 - Basement
 - Upstairs
 - Near the furnace
 - In a closet
- Important to choose a strain that can ferment at the temperature you have
 - (with desired characteristics)

Different temperatures affect flavor profile

	WHITE LABS		Belgian Wit	Belgian Wit II Yeast	Trappist Ale Yeast	Belgian Abbey Yeas	Belgian Ale Yeast	Belgian Saison I	Belgian Golden Ale
	Yeast Strain Num	ber	WLP400	WLP410	WLP500	WLP530	WLP550	WLP565	WLP570
See (Flocculation	High/Medium/Low	Low	Low-Medium	Low	Medium-High	Medium	Medium	Low
	Attenuation %	High/Medium/Low	High	High	Medium-High	Medium-High	High	Low-Medium ¹	Medium
Below	Alcohol Tolerance		Medium	Medium	High	High	High	Medium	High
	Temper <i>a</i> ture Range	High (75-85°F)	Fruity	Fruity	Fruity	Spicy	Earthy	Earthy	Fruity
	and resulting		Phenolic	Phenolic	Mod. Phenolic	Phenolic	Phenolic	Peppery	Mod. Phenolic
	Flavor Profiles		Sulfur	Sulfur	Solvent	Solvent	Solvent	He <i>a</i> vy Spice	Sulfur
		Medium (er.75 F)	Tart	Peppery	Spicy	Spicy	Fruity	Slight Earthy	Fruity
			Fruity	Light Phenol	Light Phenol	Light Phenol	Phenolic	Phenolic	Phenolic
			Mod. Phenolic	Fruity	Fruity	Fruity	Sulfur	Spicy	Sulfur
		Low (58-66 ⁰ F)	Bubble Gum	Tart	Clean	Peppery	Clean	Phenolic	Phenolic
			Clove	Earthy	Balanced	Spicy	Light Phenol	Slight Earthy	Spicy
			Spicy	Clean & Crisp	Earthy	Light Phenol	Spicy		

http://www.whitelabs.com/files/belgianchart_0.pdf

Picking the proper yeast #4: How much attenutation?

- Attenuation : Amount of sugar that is converted into Ethanol + CO2
- Apparent Attenutation (OG-FG)/OG
- Higher final gravity, yeast with lower attenutation
- Lower final gravity, yeast with higher attenuation
- Attenuation is also dependent on mash temps

Picking the proper yeast #5:Focculation (how quick will my beer clear)

- Flocculation: How well a yeast clumps and falls to the bottom.
 - High Focculation falls quick (3-5 days)
 - May need rousing to fully attenuate
 - Medium Focculation falls (6-15 days)
 - Low Focculating yeast may stay in suspension
 - Lowering the temperature can speed focculation

Picking yeast an example #1: I'm going to make an IPA

- Esters ok, ale yeast
- #2 : I am going to brew right now
 - Dry yeast

<u>Name</u>	Focculation	attenuation	<u>temperature</u>
Fermentis Safale US-05	Medium	High	59-72°
Coopers Brewers' Yeast	High	High	68-80°
Fermentis Safale S04	High	High	59-75°

#3: my basement is at 70°
#4:I want a Dry IPA, high attenuation
#5: Flocculation, medium

http://byo.com/resources/yeast

Picking yeast an example #1: I'm going to make an IPA Esters ok, ale yeast #2: I am going to brew right now Dry yeast

<u>Name</u>	Focculation	attenuation	<u>temperature</u>	
Fermentis Safale US-05	Medium	High	59-72°	
Coopers Brewers' Yeast	High	High	68-80°	
Fermentis Safale S04	High	High	59-75°	

#3: my basement is at 60
#4:I want a Dry IPA, high attenuation
#5: Quick Focculation http://byo.

http://byo.com/resources/yeast

Overview

- History of yeast
- How yeast grow/ferment
- Yeast terminology/choosing the correct strain
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast
- New advances in yeast technology

Reusing yeast easy to more complex #1 Easiest

- Dump onto another yeast cake
 - Especially good for a low gravity to high gravity beer
 - Example bock-> doppelbock
- Transfer beer off of yeast, add new beer
- If batch one tastes bad DON'T reuse the yeast
- Drawbacks:
 - Need to plan two batches of beer
 - Trub/pellet hops are present from batch one

• Scoop some yeast into a container (sterilize)

- Scoop after primary
- Store Container in the fridge
- Before use, look, smell, taste.

- Dump everything into your next batch
- Longer the storage, viability can decrease
- Trub is present , starter may be required

Short Term Storage of yeast

- #2 Some work involved
- Washing yeast
 - not acid wash but removal of trub
 - Use sterile water (Boiling)

yeast

— trub

Soiden harves

O/N

Decant Yeast leaving trub behind.

Reusing yeast from the source

Aliquot the original yeast
Pre-sterilized falcon tubes 15ml/50ml

<.50 on ebay
Smaller tubes 1-2ml cheaper

Sterile pipets <.20 on ebay
Any small vial that you can sterilize
Use one vial to start a starter
Store in fridge

Disadvantages: Must make a starter Viability depends on strain (most strains 1yr+)

Long term storage: freezing yeast

- 30% glycerol solution (dilute with sterile water)
- Mix equal volumes of yeast and glycerol solution
- Can do this directly from source yeast
- Freezer
 - Ideally not a frost free freezer
 - If you must put the vials in a small cooler with ice packs, to prevent vials from freezing.
 - Yeast are good for several years in a home freezer
 - (home freezer -20oC, lab freezers -70oC)

Long term storage

Viability of yeast strains vary

Reports of yeast strains in Glycerol stored at RT for 30+ years Viability will decrease with each freeze-thaw cycle

Overview

- History of yeast
- How yeast grow/ferment
- Yeast terminology/choosing the correct strain
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast
- New advances in yeast technology

How do I get yeast strains?

- From bottle conditioned beer
 - E-mail the brewery
 - Ask if the yeast in the bottle was the fermenting strain
 - Sometimes another strain/champagne yeast is used
- Carefully decant the beer, leaving the yeast behind.
- Add some wort to this bottle of beer.
 add airlock to the bottle or transfer to flask
 step up yeast to larger volume before using

Other sources for house strains

- Brewery Visit
 - Often they will give you a growler of yeast
- From the wild
 - Rotten fruit
 - Uncovered wort outside
- From your body
 - Beard

Plates and slants

- Require more startup materials Minimum:
 - Innoculation loop
 - Propane torch
 - Pre-cast plates YPD plates (\$1-\$2 each)
- Ensures purity
- Keep plates sealed in fridge
- Restreak monthly

Overview

- History of yeast
- How yeast grow/ferment
- Yeast terminology/choosing the correct strain
- Simple ways to harvest yeast
- Maintaining a house yeast/reusing yeast
- New advances in yeast technology

New advances in Yeast

- Wider selection
 - Both Dry and Liquid yeasts
- More yeast suppliers
 - Eventually could bring prices down
- Yeast blends (multiple strains)
 - Different strains grow differently
 - Reusing the blend: Results could vary

New exciting advances in Yeast

- Genome Sequencing/ Expression profiling
- Production of strains with desired phenotypes
 - Mating yeast

Genome Sequencing

- Dr. Verstrepen lab & white labs
 - Sequencing 100's of strains
 - Looking for genetic mapping to develop new strains
- First done by Miller-Coors ~15 years ago
 - Sequenced Weihenstephan Weizen
 - To there surprise they found two genes that had multiple copies
 - Isoamyl acetate (banana)
 - 4-vinyl guaiacol (clove)

Production of hybrid strains

- Omegayeast
- Not the mixing of two strains
- Propriety mating system
- Making new hybrid strains

Saisonstein's Monster Cross between French and Belgian saision strains

How much yeast do I need?

- Professional brewery literature:
 - 1 million cells/ml/degree Plato
- Wyeast : 100 billion cells
- White Labs: 70 to 140 billion yeast cells
- Fermentis: 115-150 billion cells enclosed

Pitch rate varies by yeast strain and what you expect

- Esters/compounds made only during yeast growth
- Too high of a pitch cleaner beers, low yeast growth
- Too low of a pitch, long lag times, sanitation more important

Professional brewery vs Homebrewery

Photo taken from Short's Brewery 7bbls

Differences

Weight of the liquid (pressure on yeast)
 Backpressure of CO2

- During primary I don't use an airlock
- Loosen lid/ aluminum foil
- Airlock when primary slow
- 3. Yeast act differently in different vessels

True Starter yeast counts

- Kai Troester NHC 2013 "Step Up Your Starters Insights Into Yeast Propagation for Homebrewers"
- Observations:
 - Different final growth rates depending on how you grow the starter
 - Sit, Shaken, Stirs (Stir/shake speed matters)
 - Gravity of Wort
 - Availability of O2

Why do professional brewerys pitch so much yeast?

- Reusing of yeast
 - low level contamination
 - petite formation
 - Yeast spill its guts (smaller)
 - diacetyl
- Cost and profits
 - Professional starters 100's dollars, typically for a small batch 1bbl.
 - Yeast has to be stepped up for a full batch
 - Waiting for yeast=loss of profits
 - Acid washing yeast (bad idea for homebrewers)

So how much yeast should I use?

- What works for you
- Lower # healthy is better then high # sick
- Trust the manufactures, they have done at least some testing
- Read hydration instructions
 Not all dried yeast has to be hydrated
- Read manufactures recommended use by date
- Try pitching less if not getting full flavor profile

