The Influence of the Mash on Sour Beer Production

AHA National Homebrewers Conference 2014 - Grand Rapids

Michael Tonsmeire
Overview

- Carbohydrates
- Mash pH
- Esters
- Phenols
- Body & Mouthfeel
Your First Sour Beer

- Parameters:
 - OG = 1.040-1.060
 - IBUs < 20
 - SRM < 25
- Brew your favorite qualifying clean beer recipe
 - English brown, Kölsch, American wheat, Scottish 60/- etc.
- Pitch into primary:
 - Standard brewer’s yeast
 - Commercial souring blend (e.g., WY3763, WLP655)
 - Bottle dregs from two unpasteurized sour beers
Standard vs. Purpose-Brewed Wort

- **Standard wort**
 - Easy!
 - Split batches

- **Purpose-brewed**
 - Additional influence over:
 - Acidity
 - Fruitiness
 - “Funkiness”
 - Body
Starch Conversion

- Unfermentatable by what?
 - Above three glucose chains (maltotriose) for brewer’s yeast, also lactose and other with beta-bonds (e.g., glycosides)
 - Above nine glucose chains for many *Lactobacillus*, and *Brettanomyces* strains (limit of alpha-glucosidase)
 - Some *Pediococcus* species are capable of fermenting starch!

- Carbohydrates
 - Starches
 - Dextrins
 - Sugars
Effect of Additional Dextrins

- Lactic acid bacteria
 - More carbohydrates = more potential acidity
 - Heterofermentative vs. homofermentative strains
 - Some commercial *Lactobacillus* strains are lacking...

- *Brettanomyces*
 - More carbohydrates = more CO$_2$ and ethanol
 - More esters anecdotally
 - No additional “funkiness”
 - 100% *Brett* fermented beers
Reducing Initial Attenuation

- Mash hotter
- Pitch a less attenuative brewer’s yeast
- Crystal/caramel malts in mash
 - Nilo Bortolotti’s experiment: 50% crystal malt reduced attenuation by 3% with C10, 11% with C40, and 13% with C120
- Lower water-to-grain ratio
 - Kai Troester’s experiment: no change between thick (1.21 qt/lb) and thin (2.37 qt/lb) mashes
- Long boil
 - Ankita Mishra’s experiment: extending a boil from 30 min to 120 increased FG by .001
Unmalted Grains

- Gelatinization/Gelation
 - Not gelatin!
- Raw grains
 - Cereal mash
 - Turbid mash
- Pre-gelatinized
 - Flaked
 - Torrefied
 - “Instant”
 - Minimal impact on fermentability
Influence of Mash/Wort pH

- Logarithmic scale
 - 3.0 100X more acid than 5.0
- Low pH can disrupt starch conversion
 - Cheater’s turbid mash?
- Inhibit *Enteric* bacteria (spontaneous)
 - pH < 4.5
- Prevent protein breakdown by *Lactobacillus*
 - pH < 4.5–4.8
- Alters ester production by *Brettanomyces*
Lowering pH Pre-Fermentation

- Acid malt
 - Up to 20%
- Refined lactic acid
- Sour mashing
 - Highly variable
 - Not advised
- Sour the wort instead!
Acids to Esters

- Lactic acid – many sources
 - Ethyl lactate – fruity
- Acetic acid – *Acetobacter/Brett*
 - Ethyl acetate – fruity to solvent
- Caprylic – buckwheat/autolysis
 - Ethyl caprylate – pineapple
- Butyric – kombucha/parsnips
 - Ethyl butyrate – tropical
- Be careful, acid to ester conversion isn’t always complete!
Influence of Phenols

- 4 vinylguaiacol (4VG)
 - Classic clove “spiciness” of hefeweizen and Belgians
- 4 ethylguaiacol (4EG)
 - Smoky-barnyard flavors of *Brettanomyces*
 - Converted from 4VG
- 4 vinylphenol (4VP) and 4 ethylphenol (4EP)
 - Barnyard, medicinal, and Band-Aid
Controlling Phenols

- Wheat malt increases ferulic in wort
 - Despite containing less than barley
- Ferulic acid rest
 - ~113°F (45°C) for 10-15 minutes
 - Converted to 4VG by POF+ brewer’s yeast
- Limit polyphenol extraction
 - Crush
 - Sparge (watch temperature and pH)
 - Use 2-row base malt
Body and Mouthfeel

- Why are wild beers so thin?
 - Lack of residual dextrins
 - Less glycerin (100% Brett especially)
- Remedies?
 - Additional protein
 - High-protein adjuncts
 - Rye, oats, spelt, and quinoa
 - Higher chloride water (100-150 PPM)
 - Beta-glucan, soluble fiber (maybe...?)
 - Be mindful of carbonation
Minimize Funk and Acidity

- Minimize funk
 - No wheat malt
 - Straight to saccharification rest
 - Use a non-phenolic brewer’s yeast (e.g., English, American, lager)
 - Brettanomyces anomalous (AKA B. claussenii) – or no Brett!
 - Rack to secondary after fermentation
 - Optional: cold crash, fine, or filter
 - Force carbonate

- Minimize acidity
 - Saccharification rest at 146-148°F (63-64°C)
 - Pitch highly attenuative brewer’s yeast
 - Lactobacillus delbrueckii, L. buchneri
Maximize Funk and Acidity

- Maximize funk
 - Add wheat malt
 - Start with ferulic acid rest
 - Pitch a phenolic brewer’s yeast strain (e.g., Trappist, hefeweizen, saison)
 - *Brettanomyces bruxellensis* (AKA *B. lambicus*)
 - Sour in primary fermentor
 - Bottle condition

- Maximize acidity
 - Saccharification rest at 158-160°F (70-71°C)
 - Pitch less attenuative brewer’s yeast
 - *Pediococcus, Lactobacillus brevis*