

Identifying and Avoiding Oxidation

AHA Homebrew Con 2016 – Baltimore, MD

Brian Bergquist

- Started brewing in 2008
- Won first medal (2010)
- Opened The Brew Shop (2010)
- MCAB Gold in Porter (2012)
- Dominion Cup Plato Award (2012)
- Joined BJCP (2013)
- Became Master judge (2015)
- Current President of FBI (Fredericksburg Brewing Insiders)
- NHC Finals for last 5 years
- NHC Medal (???)
- Lots of early notes of oxidation
- Most beers judged (homebrew & commercial) show some signs of oxidation

What is Oxidation?

Oxidation is the loss of electrons or an increase in oxidation state by a molecule, atom, or ion. **Reduction** is the gain of electrons or a decrease in oxidation state by a molecule, atom, or ion.

- Redox is a contraction of the name for a chemical reductionoxidation reaction
- As with all chemical reactions, accelerated with heat and motion

Oxygen & Oxidation

- Oxidizers Have the ability to oxidize other substances (gains electron)
 - > Oxygen is a strong oxidizer, but not the only one
 - Oxygen catalyzed with metals (copper, iron) will form highly reactive radicals which rapidly react with beer components
 - > Hydrogen peroxide, bleach (chlorine) will also oxidize
- <u>Reducers</u> Substances that have the ability to easily reduce (looses electron)
 - Sodium/Potassium Metabisulphite
 - Ascorbic Acid (Vitamin C)
 - Reductones Naturally occur in beer
- Air contains 21% oxygen

Reduction Potential – Ability to reduce oxidation

Trans-2-nonenal (Papery)

- Tastes like cardboard/ wet paper
- Aldehyde / Carbonyl
- Mainly caused by oxidation of lipids and oxidized free fatty acids
 - Linoleic & linolenic acids from malted barley
- Flavor threshhold about 0.1 ppb.
- Sulphites interact with trans-2-nonenal resulting in a loss of papery character
- Possibly created in malting/HSA

Oxidation Flavors in Beer

- > Malt phenols Reduction of flavor/aroma, malt astringency
- Hop polyphenols Reduction of flavor/aroma, harsh/astringent
- Melanoidins Natural anti-oxidants
 - Honey, toffee flavors (2,3-pentanedione) cloying notes
 - Sherry/vinous with high alcohols (Benzaldehyde / Almond)
 - Needed for oxidation of alcohols
- > Dark malts Anti-oxidants, may develop soy sauce, metallic flavors
- Fatty acids (Excessive trub) Soapy/goaty
- Hop acids Valeric (Cheesy, sweaty sock) and butyric (vomit) acids
- Hop oils Grassy, woody
- Darkening of color
- Ribes (Rye-Bees) Blackcurrent leaves(Fruity) / catty flavor overripe or spoiled fruit or vegetables
- Cidery/sherry Acetaldehyde(old/rotten apples) and acedic acid (vinegar)

Malt Oxidation

> Kernel protects malt from oxidizing

- > Once crushed, will oxidize much more quickly
- Moisture will degrade kernel and stale malt
- > Musty, stale, loss of rich grain flavors
- Store in a cool, dry place. Use sealed buckets or pet food containers

Hot Side Aeration

Hot side aeration is a myth, right?

Hot-Side Oxidation (HSO)

- Malt lipids, fatty acids, phenols, and melanoidins oxidize even during malting
 - > Happens even faster at mash/boil temperatures
 - ➤ 4-5ppm in mash water, 1-3ppm from dough in, 1-2ppm from env.
 - Boiling wort will remove oxygen, not oxidation
- Oxidized compounds can act as oxidizers after fermentation
 - Oxidation without molecular oxygen causes oxidation of beer alcohols and the creation of volatile aldehydes
 - Bonds between the aldehydes and natural sulfur compounds from yeast metabolism will break eventually, releasing aldehydes
 - Usually 3-4 weeks after fermentation is finished
- > Any splashing of hot wort (> 80f) can cause HSO
- Total exclusion of HSO can cause haze instability

Hops Oxidation

- Pellet last longer than whole leaf
- Oils and alpha acids will degrade together
 - Beta acids get bitter when oxidized
 - > Alpha:Beta ratio will show storage potential
- Keep cold and away from oxygen
 - Vacuum packed and stored in freezer
- Look/feel/smell all hops before using
- Reject brown, cheezy hops Got a spare?

Wort Aeration

- > Want to add oxygen, not oxidation!
- Wort should be below 80f, preferably already pitched
- Up to 8-14 ppm O₂ into chilled wort will help create sterols for the yeast to replicate
 - > Too much O_2 is toxic to yeast
- For high gravity beers, you can oxygenate multiple times (until beginning of active fermentation)
- \geq 60 seconds with pure O₂
- Cannot over-oxygenate with sterile air (8ppm max)
- Once fermentation begins, protect from all air/O₂

The following data, and derived graph has been taken	1 from "Worts & Coolers" by Moll	l, from a lecture Krauss, EBC conference 1967
--	----------------------------------	---

Temperature °C	0	5	10	15	20
O2 dissolved in water	14.5	12.7	11.2	10.0	9.9
O2 dissolved in 12% wort	11.6	10.4	9.3	8.3	7.4

Cold-Side Aeration (CSA)

- All air/oxygen contact after fermentation will oxidize
 Will oxidize slower at lower temperatures
- TDO Total Dissolved Oxygen (dissolved in solution)
 - Can be measured with TDO meter
 - From transfers/packaging, splashing
- TPO Total Packaged Oxygen (TDO+Headspace)
- > 20-30 years ago, 1000 ppb TPO (1ppm) acceptable
- Pros shoot for < 100 ppb TPO (.1 ppm)</p>

	Days to Staling			
Headspace air (mL per 1/3 L)	Storage at 86 °F (30 °C)	Storage at 43 °F (6 °C)		
0.5	60	120		
1.0	40	100		
1.5	20	80		
2.0	5	70		
Data obtained from test brews that were carefully controlled with respect to HSA and other forms of CSA.				

Effect of Thermal Abuse and Headspace Air on Staling

Avoiding CSA – The Basics

 \succ If possible, purge all receiving vessels with CO₂

- Careful racking to avoid splashing
 - Starsan in top of auto-syphon to reduce bubbling
 - \succ Rack with CO₂ pressure into purged vessel

If long term aging

- Avoid any headspace not purged
- > Avoid buckets or other permeable materials (Silicone stoppers)
- Do not add water (unless de-aerated) after fermentation
- > Yeast is an oxygen scavenger, especially when active

Tank	O2 cc/l year
HDPE Bucket	220
Homebrew barrel	23
Class Carboy, 30cm vinyl immersion tube	0.31
Class Carboy, silicone stopper	17
Class Carboy, wood stopper	0.1

Cold Crashing

- ➢As beer and airspace cool, they shrink
- Will pull in air to replace the vacuum
- If possible, crash under CO₂ pressure
- If not, capture CO₂ produced during fermentation?

Secondary

Really a clearing stage \succ Is there a true secondary fermentation? Reduce headspace as much as possible Purge receiving vessel Purge all transfer lines \succ Timing is everything – is it still producing CO₂? \succ Is it really worth it?

Dry Hopping

- Dry hop near the end of fermentation in the primary vessel
 - Fermentation will scrub any oxygen introduced
 - May also drag out the hops
- Dry hop in the keg
 - Keep gas (1-2 psi) on while keg is open to provide positive pressure
- Dry hop using a hop rocket
 - Purge all lines with CO₂ before starting
 - Push beer from one keg to another through the dry hops
 - Too many passes will result in grassy notes

Bottle Conditioning

- \succ No access to CO₂?
- Boil priming sugar solution to remove O₂
- Careful (quiet) racking into bottling bucket
- Fill bottles from bottom
- Additional fermentation and yeast will scrub excess O₂
- $> O_2$ barrier caps Keep air out
- O₂ absorbing caps Oxygen scrubbing
 - Must be activated in (warm) water/liquid

Purging a vessel with CO₂

- > There is no CO_2 blanket
- \succ CO₂ will mix with time, currents
- Putting CO₂ into a container filled with air will dilute the air, not replace it
- Best Method: Fill container to be purged with de-aerated water/starsan, then push out liquid under CO₂ pressure.
- ➢ Still leaves residual O₂
 - Airspaces in lid/cap
 - \succ O₂ in starsan comes out of solution
 - Krausen/Active fermentation

Kegging

Purge kegs completely

- Fill with starsan/pre-boiled water then push out with CO₂
- Uses less CO₂ than purging with PRV
- Store sanitized, pressurized kegs
- Fill kegs through 'out' side
 - Add liquid QD to your autosyphon or racking cane
 - Release pressure from PRV while racking

Purging the Keg – PRV Release

ppm O2 in Headspace after Purging						
Purge	Purge Pressure (psi)					
Cycles	10	12.5	15	20	25	30
0	210000.00	210000.00	210000.00	210000.00	210000.00	210000.00
1	124979.76	113492.65	103939.39	88962.54	77758.19	69060.40
2	74380.67	61336.10	51444.75	37687.30	28792.07	22711.14
3	44267.04	33148.55	25462.55	15965.51	10661.05	7468.76
4	26345.16	17914.84	12602.68	6763.49	3947.54	2456.17
5	15679.10	9681.92	6237.69	2865.22	1461.68	807.73
6	9331.29	5232.51	3087.34	1213.80	541.23	265.63
7	5553.44	2827.86	1528.08	514.20	200.40	87.36
8	3305.08	1528.29	756.32	217.83	74.21	28.73
9	1966.99	825.95	374.34	92.28	27.48	9.45
10	1170.64	446.38	185.28	39.09	10.17	3.11
11	696.70	241.24	91.70	16.56	3.77	1.02
12	414.63	130.38	45.39	7.02	1.39	0.34
13	246.77	70.46	22.47	2.97	0.52	0.11
14	146.86	38.08	11.12	1.26	0.19	0.04
15	87.40	20.58	5.50	0.53	0.07	0.01
16	52.02	11.12	2.72	0.23	0.03	0.00
17	30.96	6.01	1.35	0.10	0.01	0.00
18	18.42	3.25	0.67	0.04	0.00	0.00
19	10.96	1.76	0.33	0.02	0.00	0.00
20	6.53	0.95	0.16	0.01	0.00	0.00

Thanks to HomeBrewTalk member doug293cz for the chart

Purging the Keg – PRV Release

Thanks to HomeBrewTalk member doug293cz for the graph

Racking under CO₂ pressure

Bottling from the keg

- ► As with all vessels Purge
- Counter-pressure bottle filler
- ➢ Beergun
- ≻ Others?
 - ≻Can they purge the bottle?
- ≻ Cap on foam!
- Add additional priming sugar?

Stadio Honebrew Surghts

Summary

- Use fresh ingredients
- > Dark malts, melanoidins, and hops scavenge oxygen
- Minimize hot-side aeration
- Practice zero-oxygen contact on cold side
 - Completely purge all receiving vessels
 - \succ Rack using CO₂ pressure to purged vessel
 - ➤ Cap on foam!
- ➤ Keep finished beer as cold as possible and drink fresh!
- How much oxidation is acceptable?

IONS -

Thank you! Brian Bergquist

president@fredhomebrew.org http://fredhomebrew.org

11047 Pierson Dr. Ste. A Fredericksburg, VA 22408 brian@thebrewshop.biz http://thebrewshop.biz 540-479-2040